DPA3 (experimental)¶
Warning
This is an experimental architecture. You should not use it for anything important.
This is an interface to the DPA3 architecture described in https://arxiv.org/abs/2506.01686 and implemented in deepmd-kit (https://github.com/deepmodeling/deepmd-kit).
Installation¶
To install the package, you can run the following command in the root directory of the repository:
pip install metatrain[dpa3]
This will install the package with the DPA3 dependencies.
Default Hyperparameters¶
The default hyperparameters for the DPA3 architecture are:
architecture:
name: experimental.dpa3
model:
type_map: [H, C, N, O]
descriptor:
type: dpa3
repflow:
n_dim: 128
e_dim: 64
a_dim: 32
nlayers: 6
e_rcut: 6.0
e_rcut_smth: 5.3
e_sel: 1200
a_rcut: 4.0
a_rcut_smth: 3.5
a_sel: 300
axis_neuron: 4
skip_stat: true
a_compress_rate: 1
a_compress_e_rate: 2
a_compress_use_split: true
update_angle: true
update_style: res_residual
update_residual: 0.1
update_residual_init: const
smooth_edge_update: true
use_dynamic_sel: true
sel_reduce_factor: 10.0
activation_function: custom_silu:10.0
use_tebd_bias: false
precision: float32
concat_output_tebd: false
fitting_net:
neuron: [240, 240, 240]
resnet_dt: true
seed: 1
precision: float32
activation_function: custom_silu:10.0
type: ener
numb_fparam: 0
numb_aparam: 0
dim_case_embd: 0
trainable: true
rcond: null
atom_ener: []
use_aparam_as_mask: false
training:
distributed: false
distributed_port: 39591
batch_size: 8
num_epochs: 100
learning_rate: 0.001
early_stopping_patience: 200
scheduler_patience: 100
scheduler_factor: 0.8
log_interval: 1
checkpoint_interval: 25
scale_targets: true
fixed_composition_weights: {}
per_structure_targets: []
log_mae: false
log_separate_blocks: false
best_model_metric: rmse_prod
loss:
type: mse
weights: {}
reduction: mean
Tuning Hyperparameters¶
@littlepeachs this is where you can tell users how to tune the parameters of the model to obtain different speed/accuracy tradeoffs